Expression of the genes for 3â-hydroxysteroid dehydrogenase type 1 and cytochrome P450scc during syncytium formation by human placental cytotrophoblast cells in culture and the regulation by progesterone and estradiol
نویسندگان
چکیده
We have investigated the expression of cholesterol side-chain cleavage cytochrome P450 (P450scc) and 3âhydroxysteroid dehydrogenase (3â-HSD) type 1 genes during human trophoblast differentiation in culture and the modulation of their steady-state mRNA levels by steroids. During the first 24 to 48 h after plating, mononucleated cells aggregated, forming colonies. After 60 h in culture, cell diameters were increased and nuclei appeared centrally distributed within large cells, consistent with syncytiotrophoblast formation. During these striking morphological changes in culture the expression and activity levels of 3â-HSD type 1 and P450scc increased significantly as isolated cytotrophoblasts progressed to a differentiated state, with P450scc and 3â-HSD type 1 mRNAs activities being more abundant in cells cultured for 48 to 72 h. In the same culture, however, the amount of 3â-HSD protein decreased during the first 12 to 24 h by 50% compared with freshly isolated trophoblasts but remained at these levels throughout the culture period. The specific activity of the 3â-HSD as determined with pregnenolone or dehydroepiandrosterone was similar but increased with time as syncytiotrophoblast was formed in vitro. These observations provide additional evidence that the expression of these two progesterone-synthesizing enzymes is coincident and that they reach their maximum steady-state mRNA levels at a time when syncytium formation occurs in vitro. Incubation of trophoblast cells with progesterone or estradiol increased the abundance of P450scc and 3â-HSD type 1 mRNAs but had no significant effect on the amount of 3â-HSD protein. These observations of the regulation of 3â-HSD type 1 mRNA levels by steroids suggest a complex relationship of the mechanisms regulating transcription/mRNA processing and transduction of the 3â-HSD type 1 gene. Journal of Endocrinology (1997) 154, 379–387
منابع مشابه
I-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملIs maternal progesterone actually independent of the fetal steroids?
Progesterone and estradiol are the foremost steroid hormones in human pregnancy. However, the origin of maternal progesterone has still not been satisfactorily explained, despite the generally accepted opinion that maternal LDL-cholesterol is a single substrate for placental synthesis of maternal progesterone. The question remains why the levels of progesterone are substantially higher in fetal...
متن کاملI-30: Separate and Combination Effect of SexHormones on TLRs Expression in FallopianTubes
Background: Implantation is characterized by the interaction of two immunologically and genetically distinct tissues. The embryo differs from the cells of the mother, and would be rejected as a parasite by the immune system of the mother if it didn’t secrete immunosuppressive agents. Thus, immunological rejection of the fetus due to recognition of paternal antigens by the maternal immune system...
متن کاملHuman Wharton’s jelly-derived mesenchymal stem cells express oocyte developmental genes during co-culture with placental cells
Objective(s): The present day challenge is how to obtain germ cells from stem cells to treat patients with cancer and infertility. Much more efforts have been made to develop a procedure for attaining germ cells in vitro. Recently, human umbilical cord-derived mesenchymal stem cells (HUMSCs) have been introduced with higher efficacy for differentiation. In this work, we tried to explore the eff...
متن کاملComparison of the effects of progesterone and 17 β-estradiol on Schwann cell markers expression in rat adipose-derived stem cells
Steroids promote the myelination and regeneration in the peripheral nervous system. Whereas, little is known about the inducing effects by which the hormones exert their effects on Schwann cells differentiation. This could be revealed by the expression of Schwann cell markers in adipose-derived stem cells (ADSCs). The purpose of this study was to present the effects of progesterone and 17 β-est...
متن کامل